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This paper considers the class H G of all mappings of the form ϕ(z) = zh(z)g(z), where h and g are analytic in
the unit disk U , normalized by h(0) = g(0) = 1, and such that f (z) = zh(z)g(z) is logharmonic with respect
to an analytic self-map a of U . A distortion estimate and the radius of starlikeness are obtained for this class.
Additionally, a solution to the problem of minimizing the moments of order p over the class is found, as well as
an estimate for arclength.
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1 Introduction

Let H(U) be the linear space of all analytic functions defined in the unit disk U = {z : |z| < 1} of the complex
plane C , and let B denote the set of functions a ∈ H(U) satisfying |a(z)| < 1 in U. A logharmonic mapping
defined on U is a solution of the nonlinear elliptic partial differential equation

fz

f
= a

fz

f
, (1.1)

where the second dilatation function a is in B. Thus the Jacobian

J f = | fz|2
(
1 − |a|2)

is positive and hence, all non-constant logharmonic mappings are sense-preserving and open on U . If f is a
non-constant logharmonic mapping of U and vanishes only at z = 0, then [1] f admits the representation

f (z) = zm |z|2βmh(z)g(z), (1.2)

where m is a nonnegative integer, Re(β) > −1/2, and h and g are analytic functions in U satisfying g(0) = 1
and h(0) �= 0. The exponent β in (1.2) depends only on a(0) and can be expressed by

β = a(0)
1 + a(0)

1 − |a(0)|2 .

Note that f (0) �= 0 if and only if m = 0, and that a univalent logharmonic mapping on U vanishes at the origin
if and only if m = 1, that is, f has the form

f (z) = z|z|2βh(z)g(z),

where Re(β) > −1/2 and 0 /∈ (hg)(U). This class has been studied extensively in recent years, for instance, in
the works of [1]–[8], and more recently in [10], [18], [19], [23].
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As further evidence of its importance, note that F(ζ ) = log f (eζ ) are univalent harmonic mappings of the
half-plane {ζ : Re(ζ ) < 0}. Studies on univalent harmonic mappings can be found in [9]–[17]. Such mappings
are closely related to the theory of minimal surfaces (see [21], [22]).

When f is a nonvanishing logharmonic mapping in U , it is known that f can be expressed as

f (z) = h(z)g(z),

where h and g are nonvanishing analytic functions in U. The present work gives emphasis to the class H G
consisting of mappings of the form ϕ(z) = zh(z)g(z), where h and g are in H(U), normalized by h(0) = g(0) =
1, and are such that f (z) = zh(z)g(z) is a logharmonic mapping with respect to a ∈ B. Note that if ϕ1(z) =
zh1(z)g1(z) and ϕ2(z) = zh2(z)g2(z) are in the class H G with f1(z) = zh1(z)g1(z) and f2(z) = zh2(z)g2(z)
logharmonic with respect to the same a, then (ϕ1(z))λ (ϕ2(z))1−λ is also in H G, 0 ≤ λ ≤ 1.

We remark that mappings ϕ(z) = zh(z)g(z) in the class H G can be obtained by geometrically rotating the
corresponding logharmonic mappings f (z) = zh(z)g(z).

The subclass consisting of all univalent logharmonic maps f with β = 0 of the form

f (z) = zh(z)g(z)

is denoted by SLh . In Section 2, a distortion estimate is obtained for the class SLh via the use of the elliptic
modular function. The sharp radius of starlikeness of mappings in the class H G is derived in Section 3, while
Section 4 is devoted to finding a solution to the problem of minimizing the moments of order p over the class
H G. Additonally, an upper bound for arclength is obtained for all mappings in this class.

2 Distortion inequalities for SLh

For f (z) = zh(z)g(z) ∈ SLh, let w(z) = zh(z)g(z). Then w is analytic satisfying w(0) = 0, w′(0) = 1, and
w′(z) �= 0 for all z ∈ U.

Lemma 2.1 Let f (z) = zh(z)g(z) ∈ SLh, and w(z) = zh(z)g(z). Then C\w(U) contains at least one point.

P r o o f . Suppose to the contrary that w(U) = C. Since w has no branch point in U, a branch of the
inverse w−1(ζ ) = z containing 0 can be extended to all of ζ ∈ C. Hence that branch w−1 : C → U is entire, and
Liouville’s theorem implies that w−1 is constant. �

LetH denote the class of all analytic functions f (z) = ∑∞
n=1 anzn which vanishes only at 0. Hurwitz introduced

this class, which was further studied by Nehari in [20]. The results obtained relied on the ingenious use of the
identities of the elliptic modular function

J (z) = 16z

[ ∞∏
n=1

(1 + z2n)
(1 + z2n−1)

]8

=
∞∑

n=1

Anzn = 16z +
∞∑

n=2

Anzn

which maps U \ {0} onto C \ {0, 1}. Evidently J ∈ H with J ′(z) �= 0.

The following subordination property was shown by Hurwitz (see [20]).

Theorem 2.2 (Hurwitz) Let f ∈ H and f (z) �= b in U. Then f is subordinate to b J (z).

As a consequence of this result, and from the use of the properties of the elliptic modular function J , the
following observations are readily obtained.

(1) If f ∈ H and f ′(0) = 1, then f (U) ⊃ {ζ : |ζ | = 1/16}.
(2) If f ∈ H and f (z) �= b in U , then

M( f, r) ≤ |b| · M(J, r) ≤ |b|
16

e− π2

log r ,
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where M(F, r) = sup|z|=r |F(z)|.
(3) If f (z) = ∑∞

n=1 anzn ∈ H and f (z) �= b for all z ∈ U , then |an| ≤ |b||An| ≤ (|b|/16)
(
e2π

√
n
)
.

These observations and Lemma 2.1 yield the following result.

Theorem 2.3 Let f = zhg be a logharmonic mapping in U with respect to a ∈ B, where h, g are in H(U),
and normalized by h(0) = g(0) = 1. Suppose that

ρ = inf{|b| : b ∈ C\w(U)}.
Then

M( f, r) ≤ ρ

16
e− π2

log r , |z| ≤ r.

3 Starlike logharmonic mappings

Let f (z) = zhg ∈ S∗
Lh be a starlike logharmonic mapping with respect to a ∈ B, and let ϕ(z) = zhg ∈ H G be

the corresponding analytic function. Here we determine the radius of starlikeness of mappings in the set H G.

Theorem 3.1

(a) If f (z) = zh(z)g(z) ∈ S∗
Lh, then ϕ(z) = zh(z)g(z) is starlike in the disk |z| < ρ, where ρ = √

2 − 1.

(b) Given any ϕ ∈ S∗ and a ∈ B such that a(0) = 0, there are uniquely determined mappings h and g in
H(U) satisfying
(i) 0 /∈ hg(U); h(0) = g(0) = 1.

(ii) The function f (z) = zh(z)g(z) is logharmonic with respect to a, and starlike in the disk |z| < ρ,

where ρ = √
2 − 1.

The upper bounds obtained in both instances are sharp.

P r o o f . (a) Let f (z) = zh(z)g(z) ∈ S∗
Lh with respect to a ∈ B. Then [5] ψ(z) = zh(z)/g(z) ∈ S∗. Direct

calculations yield

g′

g
= a

(
1

z
+ h′

h

)
, (3.1)

and

1

z
+ h′

h
= ψ ′

ψ
+ g′

g
. (3.2)

It follows from (3.1) and (3.2) that

g′

g
= a

1 − a

ψ ′

ψ
,

which by integration leads to

g(z) = exp
∫ z

0

a(t)
1 − a(t)

ψ ′(t)
ψ(t)

dt

and

zh(z) = ψ(z) exp
∫ z

0

a(t)
1 − a(t)

ψ ′(t)
ψ(t)

dt.

Therefore,

ϕ(z) = zh(z)g(z) = ψ(z) exp
∫ z

0

2a(t)
1 − a(t)

ψ ′(t)
ψ(t)

dt.
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This gives

zϕ′(z)
ϕ(z)

= 1 + a(z)
1 − a(z)

zψ ′(z)
ψ(z)

.

Now [(1 + a(z))/(1 − a(z))] · (zψ ′(z)/ψ(z)) is subordinate to ((1 + z)/(1 − z))2. Writing(
1 + z

1 − z

)2

= p(z),

it follows that (1 + z)/(1 − z) = √
p(z), and so z = (1 − √

p(z))/(1 + √
p(z)). Thus we require the image of√

p(z) to lie between the two wedges {z = x + i x, x ≥ 0} and {z = x − i x, x ≥ 0}.
Setting

√
p(z) = x + i x, x ≥ 0, leads to z = (1 − (x + i x))/(1 + (x + i x)). Hence

|z| = ρ = min
x≥0

∣∣∣∣1 − (x + i x)
1 + (x + i x)

∣∣∣∣ =
√

2 − 1.

(b) Let ϕ ∈ S∗ and a ∈ B with a(0) = 0. Define

g(z) = exp
∫ z

0

a(t)
1 + a(t)

ϕ′(t)
ϕ(t)

dt,

h(z) = ϕ(z)
zg(z)

,

and

f (z) = zh(z)g(z) =
ϕ(z) exp

∫ z
0

a(t)
1+a(t)

ϕ′(t)
ϕ(t) dt

exp
∫ z

0
a(t)

1+a(t)
ϕ′(t)
ϕ(t) dt

.

Then h and g are nonvanishing analytic functions in U , normalized by h(0) = g(0) = 1, and f is a solution of
(1.1) with respect to the given a.

It remains to show that f is starlike inside the disk |z| < ρ, where ρ = √
2 − 1. Indeed,

Re
z fz − z fz

f
= Re

{
1 − a(z)
1 + a(z)

zϕ′(z)
ϕ(z)

}
.

Adopting a similar argument as given in part (a), it follows that Re ((z fz − z fz)/ f ) > 0 provided |z| < ρ,

where ρ = √
2 − 1.

The analytic function

ϕ(z) = z

(
1 − (

√
2 + 1)2z2

3

)

belongs to the class H G with ϕ′(
√

2 − 1) = 0. Hence the upper bounds derived are best possible. �

4 Moment of order p and arclength

In this section, we consider the problem of minimizing the moments of order p over the class H G consisting of
ϕ(z) = zh(z)g(z) with f (z) = zh(z)g(z) logharmonic in U and normalized by h(0) = g(0) = 1.

Theorem 4.1 Let ϕ(z) = zh(z)g(z) ∈ H G, and let

Mp(r, ϕ) =
∫ r

0

∫ 2π

0
|ϕ(z)|p|ϕ′(z)|2ρ dθ dρ

denote the moment of order p, p ≥ 0. Then

Mp(r, ϕ) ≥ 2π

(
r p+1

p + 1
− 2

r p+2

p + 2
+ r p+3

p + 3

)
.
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Equality holds if

ϕ1(z) = z

(
1 + p + 2

p + 4
z

) 2
p+2

or one of its rotations.

Remark 4.2

i) The case p = 0 in Theorem 4.1 relates to the problem of minimizing the area. When p = 2, then we obtain
the minimum of the moment of inertia.

ii) Observe that ϕ1 is a starlike univalent function in U .

P r o o f . Let ϕ(z) = zh(z)g(z) ∈ H G. Then g′/g = a(1/z + h′/h) for some a ∈ B with a(0) = 0. It follows
from Schwarz lemma that

Mp(r, ϕ) =
∫ r

0

∫ 2π

0
|ϕ(z)|p|ϕ′(z)|2ρ dθ dρ

=
∫ r

0

∫ 2π

0

∣∣ϕ(
ρeiθ

)∣∣p| (zh(z))′ g(z)|2|1 + a(z)|2ρ dθ dρ

≥
∫ r

0
ρ p(1 − ρ)2

∫ 2π

0

∣∣ϕ(
ρeiθ

)∣∣p| (zh(z))′ g(z)|2dθ dρ.

Let (
ϕ(z)

z

)p/2

(zh(z))′ g(z) ≡ 1, (4.1)

and

g′(z)
g(z)

= ηz ·
(

(zh(z))′

zh(z)

)
, |η| = 1. (4.2)

Combining (4.1) and (4.2), we deduce that

h(z)
p+2

2 g(z)
p
2 g′(z) = η, (4.3)

and thus

z
d

dz
(h(z)g(z))

p+2
2 = p + 2

2

(
1 − (h(z)g(z))

p+2
2 + ηz

)
. (4.4)

On the other hand, a solution of the linear differential equation

zW ′(z) + p + 2

2
W (z) = p + 2

2
(1 + ηz); W (0) = 1

is

W (z) = 1 + p + 2

p + 4
ηz.

Using (4.3) and (4.4) yields

(h(z)g(z))
p+2

2 = 1 + p + 2

p + 4
ηz. (4.5)

Combining (4.3) and (4.5) leads to

g′(z)
g(z)

= η

1 + p+2
p+4ηz

,
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and

g(z) =
(

1 + p + 2

p + 4
ηz

) p+4
p+2

,

zh(z) = z

1 + p+2
p+4ηz

,

which gives the solution

ηϕ1(ηz) = z

(
1 + p + 2

p + 4
ηz

) 2
p+2

.

�

The final result establishes an upper estimate for the arclength of mappings in the class H G.

Theorem 4.3 Let ϕ(z) = zh(z)g(z) ∈ H G be such that f (z) = zh(z)g(z) is a starlike univalent logharmonic
mapping. Suppose that |h(z)g(z)| ≤ M(r), 0 < r < 1. Let L(r) denote the arclength of the image curve Cr of
|z| = r < 1 under the mapping w = ϕ(z). Then

L(r) ≤ 4π M(r)
1

1 − r2
.

P r o o f . Evidently

L(r) =
∫

Cr

|dϕ| =
∫ 2π

0
|zϕ′(z)| dθ

≤
∫ 2π

0

∣∣(zh(z))′g(z) + zh(z)g′(z)
∣∣ dθ

=
∫ 2π

0
|h(z)g(z)|

∣∣∣∣ z(zh(z))′

zh(z)
+ zg′(z)

g(z)

∣∣∣∣ dθ. (4.6)

Since f (z) = zh(z)g(z) is a starlike univalent logharmonic mapping, it follows from [5] that the function
φ(z) = zh(z)/g(z) is starlike univalent. Now

z(zh(z))′

zh(z)
− zg′(z)

g(z)
= zφ′(z)

φ(z)
(4.7)

and

g′(z)
g(z)

= a(z)
(zh(z))′

zh(z)
. (4.8)

Combining (4.7) and (4.8) leads to

z(zh(z))′

zh(z)
+ zg′(z)

g(z)
= 1 + a(z)

1 − a(z)
zφ′(z)
φ(z)

. (4.9)

Substituting (4.9) into (4.6) yields

L(r) =
∫ 2π

0
|h(z)g(z)|

∣∣∣∣1 + a(z)
1 − a(z)

zφ′(z)
φ(z)

∣∣∣∣ dθ

≤ M(r)
∫ 2π

0

∣∣∣∣1 + a(z)
1 − a(z)

zφ′(z)
φ(z)

∣∣∣∣ dθ.
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Since [(1 + a(z))/(1 − a(z))] · (zφ′(z)/φ(z)) is subordinate to ((1 + z)/(1 − z))2, it follows that

L(r) ≤ M(r)
∫ 2π

0

∣∣∣∣∣
(

1 + z

1 − z

)2
∣∣∣∣∣ dθ ≤ 2π M(r)

[
1 + 2

∞∑
n=1

r2n

]

= 2π M(r)
(

1 + r2

1 − r2

)
≤ 4π M(r)

(
1

1 − r2

)
.

�
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[23] H. E. Özkan and Y. Polatoğlu, Bounded log-harmonic functions with positive real part, J. Math. Anal. Appl. 399(1),

418–421 (2013).

www.mn-journal.com C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


