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This paper considers the class HG of all mappings of the form ¢(z) = zh(z)g(z), where & and g are analytic in
the unit disk U, normalized by 4(0) = g(0) = 1, and such that f(z) = zh(z)g(z) is logharmonic with respect
to an analytic self-map a of U. A distortion estimate and the radius of starlikeness are obtained for this class.
Additionally, a solution to the problem of minimizing the moments of order p over the class is found, as well as
an estimate for arclength.
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1 Introduction

Let H(U) be the linear space of all analytic functions defined in the unit disk U = {z : |z| < 1} of the complex
plane C, and let B denote the set of functions a € H(U) satisfying |a(z)| < 1 in U. A logharmonic mapping
defined on U is a solution of the nonlinear elliptic partial differential equation

fo_ .t (1.1
f f

where the second dilatation function a is in B. Thus the Jacobian
Jr=1£1 (1= la?)

is positive and hence, all non-constant logharmonic mappings are sense-preserving and open on U. If f is a
non-constant logharmonic mapping of U and vanishes only at z = 0, then [1] f admits the representation

fz)=2"121""h(2)g (), (1.2)

where m is a nonnegative integer, Re(8) > —1/2, and & and g are analytic functions in U satisfying g(0) = 1
and /(0) # 0. The exponent 8 in (1.2) depends only on a(0) and can be expressed by

1+ a(0)

$= O R

Note that f(0) # 0if and only if m = 0, and that a univalent logharmonic mapping on U vanishes at the origin
if and only if m = 1, that is, f has the form

f(z) = 2121 h(2)g(2),

where Re(8) > —1/2 and 0 ¢ (hg)(U). This class has been studied extensively in recent years, for instance, in
the works of [1]—[8], and more recently in [10], [18], [19], [23].
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724 Z. AbdulHadi and R. M. Ali: Logharmonic mappings

As further evidence of its importance, note that F(¢) = log f(e®) are univalent harmonic mappings of the
half-plane {¢ : Re(¢) < 0}. Studies on univalent harmonic mappings can be found in [9]-[17]. Such mappings
are closely related to the theory of minimal surfaces (see [21], [22]).

When f is a nonvanishing logharmonic mapping in U, it is known that f can be expressed as

f(2) =h(2)g(2),
where i and g are nonvanishing analytic functions in U. The present work gives emphasis to the class HG
consisting of mappings of the form ¢(z) = zh(z)g(z), where i and g are in H (U ), normalized by 7(0) = g(0) =

1, and are such that f(z) = zh(z)g(z) is a logharmonic mapping with respect to a € B. Note that if ¢, (z) =
zh1(2)g1(z2) and @,(z) = zha(z)g2(z) are in the class HG with fi(z) = zh1(2)gi(z) and f>(z) = zh2(2)g2(2)
logharmonic with respect to the same a, then (¢, (z))" (¢2(z))' " isalsoin HG,0 < A < 1.

We remark that mappings ¢(z) = zh(z)g(z) in the class HG can be obtained by geometrically rotating the
corresponding logharmonic mappings f(z) = zh(z)g(z).

The subclass consisting of all univalent logharmonic maps f with 8 = 0 of the form

f(2) = zh(2)g(2)
is denoted by Sy;. In Section 2, a distortion estimate is obtained for the class S;; via the use of the elliptic
modular function. The sharp radius of starlikeness of mappings in the class HG is derived in Section 3, while
Section 4 is devoted to finding a solution to the problem of minimizing the moments of order p over the class
HG. Additonally, an upper bound for arclength is obtained for all mappings in this class.

2 Distortion inequalities for S,

For f(z) = zh(z)g(z) € Sii, let w(z) = zh(z)g(z). Then w is analytic satisfying w(0) =0, w’(0) =1, and
w'(z) #0forall z € U.

Lemma 2.1 Let f(z) = zh(2)g(z) € S, and w(z) = zh(z)g(z). Then C\w(U) contains at least one point.

Proof. Suppose to the contrary that w(U) = C. Since w has no branch point in U, a branch of the
inverse w~!(¢) = z containing 0 can be extended to all of ¢ € C. Hence that branch w™! : C — U is entire, and
Liouville’s theorem implies that w™! is constant. g

Let H denote the class of all analytic functions f(z) = >~ a,z" which vanishes only at 0. Hurwitz introduced

this class, which was further studied by Nehari in [20]. The results obtained relied on the ingenious use of the
identities of the elliptic modular function

= 1+ T

n=1

J(z) = 16z |:

o0 o0
= Z A" =167+ Z A"
n=1 n=2

which maps U \ {0} onto C \ {0, 1}. Evidently J € H with J'(z) # 0.
The following subordination property was shown by Hurwitz (see [20]).

Theorem 2.2 (Hurwitz) Let f € H and f(z) # b in U. Then f is subordinate to b J(z).

As a consequence of this result, and from the use of the properties of the elliptic modular function J, the
following observations are readily obtained.

(1) If f e Hand f'(0) =1, then f(U) D {¢ : |¢| = 1/16}.
(2) If f e Hand f(z) # bin U, then

bl _ 2

M(f.r) < 1bl- M(J,r) < Sge ™,
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where M (F,r) = sup,_,|F(z)|.

(3) If f(z) = Y2 a2 € Hand f(z) #bforall z € U, then |a,| < |b||A,| < (Ib]/16)(e>™").

n=1

These observations and Lemma 2.1 yield the following result.

Theorem 2.3 Let f = zhg be a logharmonic mapping in U with respect to a € B, where h, g are in H(U),

and normalized by h(0) = g(0) = 1. Suppose that
p =inf{|b] : b € C\w(U)}.
Then

2

M(fir) < fe W [zl =

3 Starlike logharmonic mappings

Let f(z) = zhg € S}, be a starlike logharmonic mapping with respect to a € B, and let ¢(z) = zhg € HG be
the corresponding analytic function. Here we determine the radius of starlikeness of mappings in the set HG.

Theorem 3.1

(@) If f(z) = zh(2)g(z) € S}, then ¢(z) = zh(z)g(z) is starlike in the disk |z| < p, where p = /2 — 1.
(b) Given any ¢ € S* and a € B such that a(0) = 0, there are uniquely determined mappings h and g in

H(U) satisfying

(i) 0 ¢ hg(U);h(0) =

(il) The function f(z)
where p = /2 — 1.

g(0) =1

The upper bounds obtained in both instances are sharp.

zh(z)g(z) is logharmonic with respect to a, and starlike in the disk |z| < p,

Proof. (a)Let f(z) =zh(z)g(z) € S}, with respect to a € B. Then [5] ¥ (z) = zh(z)/g(z) € S*. Direct

calculations yield

and

It follows from (3.1) and (3.2) that
gl a ,lp/

g l-ay’

which by integration leads to

g(z):exp/: a(t) ¥’

3.1)

(3.2)

www.mn-journal.com

L—a(r) y(r)
and
zh(z) = ¥(z) exp /OZ 1 i(;)(t) %dt
Therefore,
0(z) = zh(z)g(2) = w(Z)eXPfOz 12—ag()t) %(’t))dt.
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This gives

it follows that (1 +z)/(1 —z) = /p(z), and so z = (1 — /p(2))/(1 + /p(z)). Thus we require the image of
v/ p(2) to lie between the two wedges {z = x +ix, x > 0} and {z =x — ix, x > 0}.

Setting /p(z) =x +ix, x > 0, leadstoz = (1 — (x +ix))/(1 + (x +ix)). Hence
- .
L=etinl 5y
I+ (x +ix)
(b) Let ¢ € S* and a € B with a(0) = 0. Define

) )
st =ew | Tra() o0) "

|z| = p = min
x>0

hz) = w(Z)’
z8(2)
and
— ()exp [y Tiarm Sy di
f(z) = zh(z)g(z) = z u<r>+ (;')uw([)

exp [y ot o0y dt

Then /& and g are nonvanishing analytic functions in U, normalized by #(0) = g(0) = 1, and f is a solution of
(1.1) with respect to the given a.
It remains to show that f is starlike inside the disk |z| < p, where p = +/2 — 1. Indeed,

L —Zf - /
Reu — Re{ﬂzgo (Z) } .
f I+a(z) ¢(z)
Adopting a similar argument as given in part (a), it follows that Re ((zf; — Zf%)/f) > 0 provided |z| < p,

where p = /2 — 1.
The analytic function

9(z) =z (1 NCERES l)zzz)

3

belongs to the class HG with <p/(\/§ — 1) = 0. Hence the upper bounds derived are best possible. O

4 Moment of order p and arclength

In this section, we consider the problem of minimizing the moments of order p over the class HG consisting of

©(z) = zh(z)g(z) with f(z) = zh(z)g(z) logharmonic in U and normalized by £(0) = g(0) = 1.
Theorem 4.1 Let ¢(z) = zh(z)g(z) € HG, and let

r p2m
My(r, ) =/f lo(2)1”1¢'(2)1>p dO dp
0J0

denote the moment of order p, p > 0. Then
rp+1 rp+2 rp+3 )

— +
p+1 p+2 p+3

M,(r,¢) > 271(
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Equality holds if

p+2 72
=zl1
¢1(2) z< + p+4z)
or one of its rotations.
Remark 4.2
i) The case p = 0in Theorem 4.1 relates to the problem of minimizing the area. When p = 2, then we obtain

the minimum of the moment of inertia.
ii) Observe that ¢, is a starlike univalent function in U.

Proof. Lety(z) =zh(z)g(z) € HG.Theng'/g = a(l/z+ h'/h) forsomea € B witha(0) = 0. It follows
from Schwarz lemma that

2
M, (r, o) /f N7l () Po d6 dp
0

2
/f 0(pe)|1 (h(2)) (P11 +a(z)Ppd6 dp

v

/pp(1_p)2/ (o))" (zh(2)) 8(2)*d6 dp.
0 0

Let
p/2
v(z
(") ey s =1, @
and
g'(2) <(Zh(Z))/)
= =z .+ Inl=1. 4.2)
g(2) zh(z)
Combining (4.1) and (4.2), we deduce that
h(z) g(z) 8/ (z) = . (4.3)
and thus
d p+2 p + 2 P2
= (h(2)8(2) % = L= (1= (h(2)g(2))F +1n2). (44)
dz T2
On the other hand, a solution of the linear differential equation
p+2 p+2
W'(z) + TW( 7) = T(l +1nz); W(0)=1
is
p+2
Wi =14+——
(z) =1+ P
Using (4.3) and (4.4) yields
;1+2 p ~|— 2
h(z 4.5
(h(z)g(z)) = Pk (4.5)

Combining (4.3) and (4.5) leads to

g'(z) n
- +2
8(z) 1425z
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and

zh(z —_—
&)= 1+ 250z

which gives the solution

2
_ p+2
ne1(nz) Z( + p+4n2)

The final result establishes an upper estimate for the arclength of mappings in the class HG.

Theorem 4.3 Let ¢(z) = zh(z)g(z) € HG be such that f(z) = zh(z)g(z) is a starlike univalent logharmonic
mapping. Suppose that |h(z)g(z)| < M(r), 0 <r < 1. Let L(r) denote the arclength of the image curve C, of
|z| =r < 1 under the mapping w = ¢(z). Then

1

L(r) < 471M(r)m.

Proof. Evidently

= el = / 7 el ()10

5/02ﬂ|(zh(z)) (z) +zh(z)g'(z)| dO
+ de. (4.6)

2w
:fo @@ =5 %

Since f(z) = zh(z)g(z) is a starlike univalent logharmonic mapping, it follows from [5] that the function
¢(z) = zh(z)/g(z) is starlike univalent. Now

z(zh(z))  z8'(z) _ z¢'(2)

z(zh(z)) | z8'(2)

() s - 40 @7
and
g'(z) (zh(2))
o) =a(z) ) (4.8)
Combining (4.7) and (4.8) leads to
z(zh(z)) | z8'(z) 1+a(z)z¢'(2) 4.9)

zh(z) gz)  1—alz) ¢(z)
Substituting (4.9) into (4.6) yields

= [ w22
- 114 a(z) 2¢'(z)
—M(’)/o —az) o) |
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1+z
1—z
2

L(r) < M(r)/)zn

Since [(1 +a(z))/(1 —a(z))] - (z¢'(z)/#(z)) is subordinate to ((1 + z)/(1 — z))?, it follows that
+

2 00
) d6 <27 M(r) [1 + 22#”}
n=1
1

— 2 M(r) (1 a :2) <d4nM(r) (ﬁ) .

O
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